Resolving two-dimensional kinetics of the integrin αIIbβ3-fibrinogen interactions using binding-unbinding correlation spectroscopy.
نویسندگان
چکیده
Using a combined experimental and theoretical approach named binding-unbinding correlation spectroscopy (BUCS), we describe the two-dimensional kinetics of interactions between fibrinogen and the integrin αIIbβ3, the ligand-receptor pair essential for platelet function during hemostasis and thrombosis. The methodology uses the optical trap to probe force-free association of individual surface-attached fibrinogen and αIIbβ3 molecules and forced dissociation of an αIIbβ3-fibrinogen complex. This novel approach combines force clamp measurements of bond lifetimes with the binding mode to quantify the dependence of the binding probability on the interaction time. We found that fibrinogen-reactive αIIbβ3 pre-exists in at least two states that differ in their zero force on-rates (k(on1) = 1.4 × 10(-4) and k(on2) = 2.3 × 10(-4) μm(2)/s), off-rates (k(off1) = 2.42 and k(off2) = 0.60 s(-1)), and dissociation constants (K(d)(1) = 1.7 × 10(4) and K(d)(2) = 2.6 × 10(3) μm(-2)). The integrin activator Mn(2+) changed the on-rates and affinities (K(d)(1) = 5 × 10(4) and K(d)(2) = 0.3 × 10(3) μm(-2)) but did not affect the off-rates. The strength of αIIbβ3-fibrinogen interactions was time-dependent due to a progressive increase in the fraction of the high affinity state of the αIIbβ3-fibrinogen complex characterized by a faster on-rate. Upon Mn(2+)-induced integrin activation, the force-dependent off-rates decrease while the complex undergoes a conformational transition from a lower to higher affinity state. The results obtained provide quantitative estimates of the two-dimensional kinetic rates for the low and high affinity αIIbβ3 and fibrinogen interactions at the single molecule level and offer direct evidence for the time- and force-dependent changes in αIIbβ3 conformation and ligand binding activity, underlying the dynamics of fibrinogen-mediated platelet adhesion and aggregation.
منابع مشابه
Dissociation of bimolecular αIIbβ3-fibrinogen complex under a constant tensile force.
The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution ...
متن کاملThe lateral diffusion and fibrinogen induced clustering of platelet integrin αIIbβ3 reconstituted into physiologically mimetic GUVs.
Platelet integrin αIIbβ3 is a key mediator of platelet activation and thrombosis. Upon activation αIIbβ3 undergoes significant conformational rearrangement, inducing complex bidirectional signalling and protein recruitment leading to platelet activation. Reconstituted lipid models of the integrin can enhance our understanding of the structural and mechanistic details of αIIbβ3 behaviour away fr...
متن کاملThe Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 Outside-in Signaling*
The class I PI3K family of lipid kinases plays an important role in integrin αIIbβ3 function, thereby supporting thrombus growth and consolidation. Here, we identify Ras/Rap1GAP Rasa3 (GAP1IP4BP) as a major phosphatidylinositol 3,4,5-trisphosphate-binding protein in human platelets and a key regulator of integrin αIIbβ3 outside-in signaling. We demonstrate that cytosolic Rasa3 translocates to t...
متن کاملEffects of the RGD loop and C-terminus of rhodostomin on regulating integrin αIIbβ3 recognition
Rhodostomin (Rho) is a medium disintegrin containing a 48PRGDMP motif. We here showed that Rho proteins with P48A, M52W, and P53N mutations can selectively inhibit integrin αIIbβ3. To study the roles of the RGD loop and C-terminal region in disintegrins, we expressed Rho 48PRGDMP and 48ARGDWN mutants in Pichia pastoris containing 65P, 65PR, 65PRYH, 65PRNGLYG, and 65PRNPWNG C-terminal sequences....
متن کاملCell-compatible, integrin-targeted cryptophane-129Xe NMR biosensors.
Peptide-modified cryptophane enables sensitive detection of protein analytes using hyperpolarized 129Xe NMR spectroscopy. Here we report improved targeting and delivery of cryptophane to cells expressing αvβ3 integrin receptor, which is overexpressed in many human cancers. Cryptophane was functionalized with cyclic RGDyK peptide and Alexa Fluor 488 dye, and cellular internalization was monitore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 42 شماره
صفحات -
تاریخ انتشار 2012